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A B S T R A C T   

Sea-land segmentation (SLS) is an essential remote sensing task for various coastal and environmental studies 
such as coastline extraction, coastal erosion, coastal area monitoring, and ship or iceberg detection. This study 
aims at improving the SLS performance by modifying the Standard U-Net (SUN) model and developing an 
automatic coastline extraction framework. SUN generally has an acceptable performance in many applications. 
However, better SLS outputs are needed for reliable coastline extraction. In our proposed framework, we firstly 
analyzed three different input images, including Red-Green-Blue (RGB), Normalized Difference Water Index 
(NDWI), and Near-Infrared (NIR) images. Secondly, we modified the SUN architecture to improve the seg-
mentation results. The main modifications are using different loss functions and two fusion methods for RGB and 
NIR images. The segmentation results were then passed into the subsequent automatic coastline extraction 
pipeline based on morphological operations and pixel connectivity analysis. The training and testing steps were 
accomplished utilizing a benchmark dataset of China’s coastal areas. Moreover, another dataset consisting of a 
time series of Landsat-8 imagery from the southern Caspian Sea coastlines was collected to evaluate coastline 
extraction efficiency. The results indicate that the proposed modifications could effectively enhance the per-
formance of the SUN, with the most significant improvement to the Intersection over Union (IoU) score being as 
high as 1.68% and 8.95% in China and Caspian Sea datasets, respectively, while outperforming other state-of- 
the-art models including FC-DenseNet and DeepLabV3+.   

1. Introduction 

Sea-land segmentation (SLS) aims at separating and mapping the sea 
and land regions from remote sensing images of coastal areas. These 
maps are a valuable resource for coastal areas and ecosystems studies. 
However, obtaining these maps from optical remote sensing images is 
quite challenging due to factors like intensity inhomogeneity, complex 
land texture, and low contrast at the sea-land interface, making it 
spectrally difficult to discern between the sea and land regions (Elkha-
teeb et al., 2021). Many applications such as coastal management 
(Hamylton and Prosper, 2012), water resources management (Giardino 
et al., 2010), and coastline detection (Qiao et al., 2018) can benefit from 
these maps. Another application of these maps is in ship detection (Wu 
et al., 2009), where it is considered a major preprocessing step in which 
the land region is excluded from the search area. Improving the meth-
odologies used for SLS is of great importance, and many researchers 
constantly offer new contributions to this topic. 

The goal of semantic segmentation is to classify individual pixels in a 
given image into a specific number of classes, which in the case of SLS 
are sea and land classes. Historically, SLS was carried out by manually 
delineating satellite images, which is immensely time-consuming and 
labor-intensive. However, many semi-automatic and automatic ap-
proaches have been proposed for the SLS of optical remote sensing im-
ages in recent years that are not based on deep learning (DL). Feyisa 
et al. (2014) suggested a new Automated Water Extraction Index (AWEI) 
for automatic binary classification of water bodies and dryland areas 
that relied on thresholding. Evaluations on Landsat 5 TM images 
revealed that AWEI improved the classification accuracy compared to 
Modified Normalized Difference Water Index (MNDWI) and Maximum 
Likelihood methods. Based on the texture of sea and land surfaces, 
Huihui et al. (2016) developed the Gray Smoothness Ratio (GSR) 
descriptor for SLS of infrared images. Support vector machine (SVM) 
used the GSR to segment the images roughly, and the Otsu algorithm 
was adopted to segment sea-land boundaries. This method could reduce 
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the computation complexity while offering a better segmentation result 
than the relevant approaches. Liu et al. (2017) presented a novel coarse- 
to-fine model for the SLS of high-resolution panchromatic imagery by 
merging the improved multi-scale normalized cut (IMNcut) and 
improved Chan-Vese methods. Assessments on different images revealed 
the better performance of this model compared to a few other models 
like local binary pattern (LBP). Lei et al. (2018) proposed a new method 
for segmenting infrared images using superpixels and multi-scale fea-
tures. This model outperformed traditional algorithms when evaluations 
were carried out using Landsat-8 infrared images. 

Recent advances in DL methods have led to their implementation in 
many remote sensing fields such as active fire detection (Rostami et al., 
2022), building segmentation (Khoshboresh-Masouleh et al., 2020), and 
hyperspectral image classification (Ansari et al., 2021) where they have 
outperformed many conventional methods. This revolution has caused a 
shift in image processing and artificial intelligence from machine 
learning approaches such as SVM (Ranjbar et al., 2021) and random 
forest (RF) (Zarei et al., 2021) towards DL in the remote sensing com-
munity since 2014 (Ma et al., 2019). CNNs are the most sought-after and 
published DL networks in the remote sensing community (Ball et al., 
2017). In recent years, these networks have achieved remarkable im-
provements (Zhang et al., 2021). There have been multiple cases of 
applying DL methods, especially CNNs, to the SLS problem. 

Cheng et al. (2017) suggested the CNN model FusionNet to segment 
harbor images in high-resolution Google Earth images. Their model 
performed SLS and ship detection simultaneously and outperformed 
other models like SegNet. Li et al. (2021a) suggested an automatic 
framework for mapping Germany’s national surface water by training 
the ResNet model using OpenStreetMap (OSM) and Sentinel-2 data. This 
model obtained an accuracy score of 86.32% when comparing their 
resulting open water products to existing water products. Li et al. (2018) 
proposed DeepUNet for the segmentation of high-resolution optical 
images. They replaced the convolutions with DownBlocks and UpBlocks, 
which improved the accuracy by 1–2% compared to other models like U- 
Net. Shamsolmoali et al. (2019), utilizing residual blocks that were 
densely connected alongside the convolution layers, developed RDU- 
Net. Evaluations on images from Google Earth and ISPRS_Benchmark 
showed that this model outperformed other methods like DenseNet. 

Li et al. (2021b) introduced a pixel-based CNN for water segmenta-
tion using region of interest (ROI) labels for training instead of full-label 
datasets. Assessments with Landsat-8 images revealed this method’s 
better performance than other methods like thresholding Normalized 
Difference Water Index (NDWI). Yang et al. (2020b) collected a sea-land 
benchmark dataset from Landsat-8 images and assessed the SLS 

performance of different state-of-the-art architectures including Refi-
neNet, FC-DenseNet, DeepLabV3+, PSPNet, SegNet, and U-Net. 

Their results revealed that DeepLabV3+ and FC-DenseNet achieved 
the best performance with the latter having the highest Intersection over 
Union (IoU) score. Cui et al. (2021) suggested the scale-adaptive 
network SANet that substitutes the serial convolution operation for a 
multi-scale feature learning module. Using the Gaofen-1 images for 
assessment revealed that this model improved the accuracy compared to 
other models like DeepUNet while achieving sharper boundaries. 
Although many DL-based SLS frameworks have been suggested in 
various studies, most of them have not investigated the optimization of 
the performance of an individual model regarding the variables such as 
input data type and model structure. Also, these studies have mainly 
focused on comparing different state-of-the-art methods instead of 
further enhancing an efficient model to reach the highest possible 
accuracy. 

Another topic that is closely related to SLS is coastline extraction. 
Coastline extraction is the process of detecting the pixels pertaining to 
the sea-land interface, which is fundamentally similar to edge detection. 
There are multiple methods for automatic and semi-automatic coastline 
extraction in the literature. Van der Werff (2019) proposed a supervised 
edge detection method for mapping several shoreline indicators based 
on the analysis of differences in spectral albedo caused by the moisture 
content of the sand. Comparisons with two other indicators derived from 
a field survey and a digital elevation model revealed that the positional 
error in this method was within the acceptable margin. Vos et al. (2019) 
evaluated the potential of publicly available optical satellite imagery for 
detecting the variability in coastline position based on Multilayer Per-
ceptron classification and sub-pixel border segmentation. The proposed 
method was tested on five sites with long-term in situ measurements. 
The root mean square error (RMSE) of the extracted coastlines in these 
test sites ranged from 7.3 to 12.7 m. 

Using GPS survey data, Kelly and Gontz (2018) evaluated all known 
Landsat-8 water indices for the automatic mapping of coastlines based 
on a thresholding approach. Amongst the seven indices, MNDWI ach-
ieved the best performance with an accuracy of 88.4%. San and Ulusar 
(2018) introduced the spatial uncertainty algorithm SLiP-SUM for the 
semi-automatic detection of shorelines based on the snake algorithm. 
They tested the suggested algorithm on a dynamic coastal area and 
predicted the future shorelines for 2020, 2025, 2030, and 2035. Rogers 
et al. (Rogers et al., 2021) developed the automatic coastal vegetation 
line detection tool VEdge_Detector using a DL method based on holis-
tically nested edge detection architecture. Assessments on high spatial 
resolution optical images revealed that the optimum input spectral band 

Fig. 1. China dataset study area. Blue squares represent the selected Landsat-8 images and the red square in the large-scale image corresponds to the image with Path 
120 and Row 036. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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combination was Red-Green-NIR . The mean distance error of the out-
puts was less than 6 m (2 pixels) compared to positional measurements 
and manually digitized vegetation lines. 

Despite all the contributions in the literature regarding SLS with DL 
methods and automatic coastline extraction, little attention has been 
paid to merging these two topics. On the other hand, only a few studies 
have experimented with different band combinations to find the opti-
mum input type for SLS in DL methods, and further assessments are 
needed in the community. Moreover, most related studies have only 
focused on comparing different DL models instead of further enhancing 
an optimum model to reach the highest possible accuracy. Considering 
the abovementioned issues, this study aims to propose an enhanced SLS 
and automatic coastline extraction framework by the following 
contributions:  

– Modifications to the SUN architecture are introduced to increase 
segmentation accuracy. These modifications include using the Jac-
card loss function, implementing a double encoder architecture for 
the late fusion of Red-Green-Blue (RGB) and Near-Infrared (NIR) 
images, and utilizing a residual operation in convolution blocks.  

– NDWI, NIR, and RGB images are used as the input to designed 
models, and the results are compared. To our best knowledge, this is 
the first study to utilize the NDWI images as the input for SLS in DL 
methods.  

– A post-processing pipeline is suggested to automatically extract 
coastlines from the binary segmentation outputs of the trained 
models based on pixel connectivity classification and morphological 
operations. 

2. Remote sensing datasets 

2.1. Datasets acquisition 

2.1.1. China dataset 
The primary dataset in this study is based on the benchmark SLS 

dataset collected by Yang et al. (2020b). They chose the offshore coastal 
area of China as their study area (Fig. 1). From all the Landsat-8 OLI 
image collections of the study area, 17 and 12 unique full-frame images 

with less than 5% cloud cover were selected for training and testing 
purposes, respectively. The Landsat-8 full image size was too large to be 
fed directly into the model, so they were split into 512 × 512 pixel 
patches. At the end of the patching process, 1,950 training samples and 
1,411 testing samples were generated. The ground-truth images corre-
sponding to each patch were manually annotated with LabelMe (Russell 
et al., 2008). Finally, Red-Green-Blue and NIR-SWIR1-Red spectral band 
combinations were selected separately in each sample to create two sub- 
datasets. These two sub-datasets were used to train two instances of the 
same models. It should be noted that the samples in the China dataset 
were of PNG data type, without any spatial information. 

2.1.2. Caspian Sea dataset 
In this study, a second dataset has been collected from the Caspian 

Sea southern coastlines for the sake of further testing the models that 
were trained on the China benchmark dataset. This dataset has also been 
used to extract the southern Caspian Sea coastlines. The Caspian Sea is 
the most extensive closed water body in the world without tides pres-
ence, and its water level repeatedly oscillates (Firoozfar et al., 2012). 
Therefore, continually monitoring its coastlines is of great importance. 
Tides introduce changes in the position of coastlines, making tidal level 
observations necessary for correcting their effects (Chen and Chang, 
2009). Consequently, the lack of tides in the Caspian Sea is an asset for 
coastline extraction. 

Three ROIs have been selected in the study area so that each one 
would not exceed a single Landsat-8 frame area (Fig. 2). While selecting 
these ROIs, two coastal regions with simple and complex morphologi-
cally and geometrically features have been considered. ROIs 1 and 2 are 
of the simple coast type, while ROI 3 comprises the complex coast type. 
Due to the vastness of the study are, some cloud pixels could be present 
in the images even when the sky is clear. Therefore, each ROI was 
defined as only a narrow vicinity of land and sea to minimize the number 
of cloud pixels over the study area and especially over the coastline. This 
vicinity covers enough area to apply segmentation properly and delin-
eate the coastlines while reducing the challenges associated with cloud 
pixels. 

Coastline monitoring requires time-series data due to the dynamic 
behavior of coastal regions, and the temporal interval for data 

Fig. 2. Caspian Sea study area. The dotted red, dashed green, and solid blue polygons represent ROIs 1, 2, and 3 respectively. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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acquisition is dependent on the context of the study (Beach et al., 2005). 
Acquiring and processing time-series satellite images is time-consuming 
and labor-intensive, making the data preparation step difficult. Google 
Earth Engine (GEE) offers a perfect solution for this problem by making 
it possible to access and process satellite images from multiple sources in 
a cloud computing platform. GEE also makes it possible to crop the 
necessary regions from the images and download the resulting patches 
for local processing, reducing the dataset volume dramatically. 

In this study, we selected a Landsat-8 Tier-1 Level 2 image per year 
with less than 5% cloud cover from 2013 to 2020 within GEE. This in-
terval provided enough data for model testing and coastline variability 
analysis purposes. Even though the cloud cover was set to a low value, i. 
e., 5%, while selecting full-frame images, there were no images with 
cloud-free coastlines in some years. Thus, there were no samples for 
some years in each ROI in the Caspian Sea dataset. Finally, ROI’s 
shapefiles cropped the selected images, and the Blue-Green-Red-NIR 
bands were stacked and exported. There were six four-band images for 
each ROI with their corresponding ground truth images manually an-
notated. This process involved creating a land region shapefile by 

delineating the coastline over the RGB image in QGIS software and 
subsequently converting the resulting shapefile to a binary raster. A list 
of all the selected images in the Caspian Sea dataset is presented in 
Table 1. 

2.2. Datasets preparation 

2.2.1. China dataset 
Ground truth images in the downloaded benchmark dataset were of 

RGB type with red and black regions representing land and sea areas. 
Utilizing this format would result in redundancy and incompatibility 
with the designed models. Therefore, the ground truth images have been 
converted into a single-band binary type with white and black regions 
representing land and sea areas. Using the Green and NIR bands 
(Landsat-8 bands 3 and 5 respectively) available in this dataset, NDWI 
images have been calculated for all the samples using Eq. (1). In total, 
three image sets have been selected from the dataset: RGB, NIR, and 
NDWI. Upon investigating the downloaded dataset, it was revealed that 
most of the samples included only one class, either sea or land. As data 
redundancy, these samples were excluded from the dataset. As a result, 
only 831 samples remained from the training and testing datasets. 78 of 
831 remaining samples were selected for testing and the rest for training 
(Fig. 3). Like the Caspian Sea dataset (Section 2.1.2.), three coast types 
have been considered while selecting testing samples to evaluate trained 
models’ performance better. These coast types include morphologically 
and geometrically simple and complex coasts, and small islands sur-
rounded by water. More than half of the samples in the China testing 
dataset had complex coast types. 

NDWI =
Green − NIR
Green + NIR

(1) 

Due to the exclusion of single-class samples, the data volume dwin-
dled to about a quarter of its initial size. Thus, data augmentation 
techniques can synthetically increase the training dataset size in this 
situation. More training data can help prevent potential overfitting is-
sues, leading to a better generalization (Yu et al., 2017). Data 
augmentation techniques include random rotation, flipping, noise in-
jection, blurring, and rescaling (Shorten and Khoshgoftaar, 2019). The 
augmentation techniques that alter the pixel value or change the posi-
tion of the edges could not be used in this study due to the importance of 
the coastline position. Therefore, the training dataset augmentation was 
achieved by applying every possible flip operation to the images and 

Table 1 
Landsat-8T1 L2 images used to generate the Caspian Sea dataset.  

Acquisition Date Cloud Cover (%) Path Row ROI 

2013-06-03 1 165 034 ROI 1 
2014-01-13 1.85 
2016-02-04 2.59 
2017-01-05 1.37 
2019-08-23 0.01 
2020-12-15 4.71  

2013-10-16 2.19 166 034 ROI 2 
2014-08-16 0.6 
2015-04-29 0.49 
2016-08-21 0.02 
2017-08-08 0 
2018-03-20 1.65  

2013-08-29 0.26 166 032 ROI 3 
2014-08-16 0.32 
2015-04-29 0.15 
2016-08-21 0 
2017-08-08 0 
2018-07-10 1.47  

Fig. 3. China dataset preparation steps.  
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their corresponding ground truth images. This process increased the 
training dataset size by a factor of four. 

2.2.2. Caspian Sea dataset 
The Caspian Sea testing dataset needed some preprocessing before 

being utilized. Firstly, NDWI images have been calculated using the raw 
images in the same manner as the China dataset. Most Landsat-8 images 
have low contrast due to the low reflectance of natural objects on the 
earth’s surface. Thus, all the collected samples in the Caspian Sea dataset 
have been enhanced by the linear 1% stretch method. Images associated 
with ROIs 1, 2, and 3 have a size of 4196 × 3607, 3614 × 5196, and 
2757 × 3052 pixels, respectively. These image sizes are too large to be 

fed into the models directly, so they have been sliced into patches of 512 
× 512 pixels in the final preprocessing step. After the prediction step, 
these patches would be attached to form the full segmentation maps of 
the same size as the original images. A flowchart of the preprocessing 
steps of the Caspian Sea dataset can be seen in Fig. 4. 

3. Methodology 

3.1. Sea-land segmentation models 

U-Net is one of the most popular CNNs, first introduced by Ronne-
berger et al. (2015). It was initially designed for biomedical image 

Fig. 4. Caspian Sea dataset preprocessing steps. The depicted sample is associated with ROI 2 and the gray areas are No-Data. (a) RGB; (b) NDWI; (c) NIR; (d) GT.  

Fig. 5. Model 1 architecture.  
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segmentation purposes. However, it has also been utilized in many other 
fields due to its adequate performance. The SUN architecture features 
four encoder and decoder blocks individually and a bottleneck block. 
Each block’s activation functions are the rectified linear (ReLU). It uti-
lizes 3 × 3 unpadded filters for convolution and 2 × 2 filters for both up- 
convolution and max-pooling. The number of convolution filters in the 
first layer is 64, doubling every subsequent encoder block until the 
bottleneck block. After that, the number of convolution filters halves in 
every decoder block. There is a 1 × 1 convolution operation at the final 
layer mapping the last feature vector to the specified classes. Three 
models are proposed based on the SUN architecture for the SLS task in 
this study. 

3.1.1. Model 1 
Model 1 is the SUN trained to set the basis for evaluating other 

models. The only addition to the SUN architecture in this model is the 
employment of a Batch Normalization (BN) layer (Fig. 5) before the 

ReLU activation which has become an essential practice in DL (Luo et al., 
2019). It has been proven that BN enhances generalization and 
convergence in the training process (Ioffe and Szegedy, 2015). This 
model takes either single-band NDWI or three-band RGB images as the 
input and the number of convolution filters in the first layer is 32. 
Activation functions in all the layers are the ReLU except in the final 1 ×
1 convolutional layer, which is the Sigmoid. Finally, the Adam optimizer 
compiled the model with a learning rate of 0.001 and the binary cross- 
entropy loss function. 

3.1.2. Model 2 
Model 2 takes the architecture in Model 1 and tries to maximize its 

performance by modifying its elements. In this model, the NIR and RGB 
images are concatenated in an early fusion manner, i.e., before the 
encoding step, to form four-band images passing into the model as the 
input. In addition, a dropout layer has been added to the final decoder 
block to prevent potential overfitting issues. The significant enhance-

Fig. 6. Model 3 architecture.  

Fig. 7. Model 4 architecture.  
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ment in this model compared to Model 1 is a custom loss function based 
on the Jaccard coefficient. The problem with the binary cross-entropy 
loss function is that it could be saturated when the accuracies are high 
due to class imbalance. The cross-entropy loss value is usually very low 
for a given sample with a much smaller target area than the background. 
This problem can cause an unrealistic representation of the training 
data, resulting in inefficient loss value estimation. Assuming y and ŷ to 
be the n × m ground truth and prediction images, respectively, the 
Jaccard loss function for a given sample is defined using Eq. (2). 

LossIoU = −

∑n
i=1

∑m
j=1yi,j.ŷ i,j

∑n
i=1

∑m
j=1

(
yi,j + ŷ i,j − yi,j.ŷ i,j

) (2)  

3.1.3. Model 3 
Model 3 is designed to reduce the training time while improving the 

performance compared to the SUN. For this purpose, the model depth 
has been decreased by setting the number of convolutional filters in the 
first layer to 16, which dramatically reduces the number of trainable 
parameters. Two workarounds have been suggested to compensate for 
the performance loss caused by this decision. Firstly, a concatenation 
operation is introduced within each convolutional block similar to the 
Residual blocks in the ResNet (He et al., 2016), as can be seen in Fig. 6. 
This operation should help further improve the feature extraction pro-
cess within each block. Secondly, a custom weighted binary cross- 
entropy loss function has been incorporated in this model. It has been 
proven that dedicating a higher probability to the foreground targets in 
the cross-entropy loss function makes learning imbalanced samples 
more efficient (Aurelio et al., 2019). Like Model 1, Model 3 is also 
designed to take either NDWI or RGB images as the input. A dropout 
layer is present in this model, and the activation function for the final 
convolution layer is the Softmax. Other than the loss function, this 
model is compiled similarly to the previous ones. 

3.1.4. Model 4 
Model 4′s architecture is inspired by the FuseNet model proposed by 

Yang et al. (2020a). This model has a relatively lower width than the 
previous models, hence the reduced number of trainable parameters. It 
is a dual encoder network with different inputs for each path that con-
catenates the inputs in a late fusion manner, i.e., after the encoding step. 
The idea is to extract features from different inputs separately and 
combine them into a more informative feature set in the decoding pro-
cess. As shown in Fig. 7, skip features from the encoder blocks are 
concatenated with the up-convolution outputs in the decoder path. In 
this model, the RGB and NIR images were passed into the first and 
second encoder paths, respectively, and were fused after encoding. 
Model 4 is compiled the same way as the other models, and it also 
features the custom Jaccard loss function introduced in Model 2. 

3.2. Training strategies and comparison with other segmentation models 

Two training scenarios have been considered for each model defined 
in Section 3.1. for the ablation study on input data types. Conversely, the 
ablation study analyzed the loss functions when the input data type was 
unchangeable. Model 1 was firstly trained on RGB images to lay the 
foundation for comparing different training strategies. This scenario is 
referred to as the SUN in this paper. Model 1 was then trained on the 
single-band NDWI images. Model 2 comprised two loss functions (i.e., 
Cross-entropy and Jaccard) used in two individual scenarios. Model 3 
was first trained on RGB then NDWI images, as in Model 1. Moreover, 
Model 4 consisted of the same training scenarios as Model 2. 

Two other models have also been implemented for a comprehensive 
assessment of our methods, including FC-DenseNet (Jegou et al., 2017) 
and DeepLabV3+ (Chen et al., 2018). These models are among the most 
commonly used state-of-the-art semantic segmentation models that have 
also been successfully employed in SLS (Yang et al., 2020b). Specifica-
tions of different training strategies can be seen in Table 2. 

3.3. Automatic coastline extraction 

Edge detection methods can automatically extract the coastline from 
the segmentation outputs. However, directly applying these techniques 
would cause two significant problems. Firstly, the segmentation errors 
can create defects in the edge image unless the segmentation image has 
an IoU score of 100%, which hardly ever happens in any segmentation 
problem. Secondly, the ROI boundary also gets extracted as the edge 
which is not of interest and must be filtered out. This study has devel-
oped a post-processing pipeline to overcome these issues, as presented in 
Fig. 8. The post-processing takes the segmentation image, a structuring 
element designed according to the 4-neighbors pixel connectivity, and 
the binary ROI mask as the input and extracts the coastline in 8 steps. 

The processing starts with step 1, in which the initial edges are 
detected in the segmentation image. The edge detection process is car-
ried out by applying a morphological erosion operation to the segmen-
tation image using the designed structuring element and subtracting the 
erosion image from the segmentation image. The resulting edge image 
contains an enclosed region consisting of the coastline and the lower ROI 
boundary and some redundant edges caused by the defects in the seg-
mentation image. It should be noted that the detected lower ROI 
boundary is within the binary ROI mask and cannot be filtered out. In 
step 2, the redundant edges are excluded by pixel connectivity analysis. 
The idea is to classify white pixels based on their connectivity of 8-neigh-
bors. Therefore, all the connected land pixels are identified as an indi-
vidual class. After the classification, the class with the most pixels 
corresponds to the enclosed region, while the classes corresponding to 
the redundant edges have a much lower pixel count. This information 
can be used to effectively exclude all the redundant edges that are not 
connected to the lower ROI boundary or the coastline. It is noteworthy 
that the 8-neighbors connectivity is considered for this classification to 
prevent the removal of the sea-land interface pixels that are only diag-
onally connected to the other land pixels. 

Step 3 starts by filling the black region within the white enclosed 
area by the flood-fill algorithm. The structuring element used for erosion 
ensures that the black region within the enclosed area has 4-neighbors 
connectivity. Thus, all the extracted edge pixels, including those that 
were only diagonally connected, are attached to the filled region, 
resulting in the 4-neighbors connectivity between all the land pixels. 
Due to the extra care taken during the image collection process in the 
Caspian Sea dataset, the sea-land interface in the images was cloud-free. 
However, some cloud pixels near the ROI boundary could not be avoi-
ded. Therefore, the extracted coastlines could not have had any imper-
fections, but some imperfections could be present in the lower ROI 
boundary. In step 4, these imperfections are made separable by using the 
binary ROI mask to fill the No-Data region in the output image of the 
previous step with white pixels. If imperfection is present in the lower 

Table 2 
Specifications of different training strategies. (Sc. stands for Scenario).  

Models Input 
data 

Number of 
trainable 
parameters 

Train time per 
epoch (seconds) 

Loss 
Function 

FC-DenseNet RGB 3,457,872 1,482 Cross- 
entropy 

DeepLabV3+ RGB 11,819,874 793 Cross- 
entropy 

Model 1 Sc. 1 RGB 7,765,985 236 Cross- 
entropy Model 1 Sc. 2 NDWI 7,765,409 229 

Model 2 Sc. 1 RGB +
NIR 

7,766,273 240 Cross- 
entropy 

Model 2 Sc. 2 Jaccard 
Model 3 Sc. 1 RGB 3,140,898 162 Cross- 

entropy Model 3 Sc. 2 NDWI 3,140,610 161 
Model 4 Sc. 1 RGB, 

NIR 
2,032,481 421 Cross- 

entropy 
Model 4 Sc. 2 Jaccard  
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ROI boundary, it is revealed as a black pixel cluster. These clusters are 
eliminated in step 5 by applying the pixel connectivity classification on 
the black pixels with the 4-neighbors connectivity method. Keeping the 
class with the highest pixel count and excluding any other classes could 
efficiently eliminate the imperfections connected to the lower ROI 
boundary. 

At this point, all the imperfections in the segmentation image are 
removed, and the black and white regions are perfectly separable, each 
having the 4-neighbors connectivity. The cleaned segmentation image is 
easily generated in step 6 by applying the binary ROI mask to the output 
from step 5. For extracting the coastline, firstly, the edges in the output 
from step 5 are detected in step 7. The edge detection method is the same 
as in step 1. The resulting edge image contains the coastline and the 
upper ROI boundary. Finally, the coastline is isolated in step 8 by 
excluding the upper ROI boundary. Since the detected upper ROI 
boundary is out of the binary ROI mask, it can be filtered out easily. It 
should be noted that the detected coastline pixels belong to the land 
class. The output binary coastline raster can be converted to the coast-
line shapefile with raster to polyline toolboxes. 

3.4. Evaluation metrics 

Outputs of the models with the Sigmoid activation function were 
single-band images representing the probability of each pixel belonging 
to the land class. Thus, the probabilities were thresholded by a value of 
0.5 to generate the final binary segmentation images. On the other hand, 
outputs of the models with the Softmax activation function had two 
bands corresponding to the land and sea classes. In this case, the final 
segmentation images were generated by assigning the class with the 
maximum prediction value to each pixel. A confusion matrix can be 
calculated by comparing the resulting binary segmentation images to 
the ground truth. Since all the images in the Caspian Sea dataset had No- 
Data areas, it was assured that only the ROI region in the segmentation 
image was compared to its corresponding region in the ground truth. 

From the confusion matrix, several measures are extracted, including 
True Positive (TP), True Negative (TN), False Positive (FP), and False 

Negative (FN) values. These measures define the following metrics for 
assessing the models’ performance: Accuracy, Sensitivity, Precision, F1- 
score, and IoU. Among these five metrics, IoU is the most strict and, it 
usually has a lower value than the others. It considers the overlap be-
tween the prediction and ground truth images and penalizes both the 
false positives and the false negatives. These five evaluation metrics are 
defined in Eq. (3) to (7). 

Accuracy =
TP + TN

TP + TN + FP + FN
(3)  

Sensitivity =
TP

TP + FN
(4)  

Precision =
TP

TP + FP
(5)  

F1 − Score =
2.Precision.Sensitivity
Precision + Sensitivity

(6)  

IoU =
TP

TP + FP + FN
(7)  

3.5. Implementation 

Due to the hardware limitations, training DL models can be chal-
lenging on local machines (Ball et al., 2017). On the other hand, pro-
gramming environment maintenance for DL can be equally challenging 
sometimes. The development of free cloud computing services like 
Google Colaboratory (Carneiro et al., 2018) is auspicious due to the 
availability of free accelerators like TPUs (Tensor Processing Unit) and 
GPUs (Graphical Processing Unit). Combined with the Google Drive 
service, it is ideal for training medium to relatively large-sized models. 

The preprocessed data were uploaded to Google Drive, then accessed 
within the Google Colaboratory notebook. All the developed models in 
Section 3.1 were designed with the Keras and Tensorflow API within the 
Python environment. The training was carried out for 150 epochs in all the 
models with a Tesla T4 GPU selected as the accelerator. 10% of the training 

Fig. 8. Automatic coastline extraction flowchart. The green line and the red squares depict the coastline and segmentation defects, respectively, and the gray areas 
are No-Data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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samples were selected just for validation purposes to monitor overfitting 
issues while training. It should be noted that only the China dataset was 
used for training. The data and the source codes developed in this study will 
be openly available upon publication at https://github.com/mohammad- 
aghdaminia/sea-land-segmentation-coastline-extraction. 

4. Results and discussion 

In this study, different training strategies have been evaluated based 
on their IoU scores. This metric offers a more realistic representation of 
the models’ performance and usually has a lower value than the other 
metrics. The two testing datasets in this study were assessed separately 
in the following two sub-sections. 

4.1. China dataset 

The trained models were first evaluated on the China dataset. Table 3 
represents the quantitative results of the China dataset. Model 2 Sc. 2 
achieved the best performance among all the models, offering the 
highest IoU, Accuracy, and Sensitivity scores of 94.45%, 99.42%, and 
96.16%, respectively, while FC-DenseNet yielded the lowest scores in all 
the metrics. Moreover, the highest F1-Score and Precision scores 
(96.47% and 98.09%, respectively) were associated with DeepLabV3+
and Model 4 Sc. 1. On the other hand, Model 1 performed better with 
NDWI images (Sc. 2) than with RGB images (Sc. 1), with the difference in 
the IoU score being 0.9%. Unlike Model 1, Model 3 performed the best 
on RGB images (Sc. 1), offering the second-highest IoU score. 

Fig. 9. Visual results of the China dataset. Blue circles and red squares represent detail loss and artifact, respectively. (a) simple coast; (b) small island surrounded by 
water; (c) complex coast. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 3 
China dataset quantitative results (maximum values are bold).  

Models Mean 
Accuracy 
(%) 

Mean 
Sensitivity 
(%) 

Mean 
Precision 
(%) 

Mean 
F1- 
Score 
(%) 

Mean 
IoU 
(%) 

FC-DenseNet  97.07  92.03  95.97  92.97  88.65 
DeepLabV3+ 99.23  94.72  98.09  95.66  93.15 
Model 1 Sc. 1  99.35  94.53  96.74  94.90  92.77 
Model 1 Sc. 2  99.10  95.15  97.85  96.13  93.67 
Model 2 Sc. 1  99.34  95.71  97.85  96.36  93.84 
Model 2 Sc. 2  99.42  96.16  96.80  96.40  94.45 
Model 3 Sc. 1  99.28  96.06  96.49  96.20  94.08 
Model 3 Sc. 2  99.01  94.94  97.85  95.76  93.18 
Model 4 Sc. 1  99.09  96.12  97.33  96.47  93.75 
Model 4 Sc. 2  99.35  95.84  97.57  95.99  93.95  

M. Aghdami-Nia et al.                                                                                                                                                                                                                         

https://github.com/mohammad-aghdaminia/sea-land-segmentation-coastline-extraction
https://github.com/mohammad-aghdaminia/sea-land-segmentation-coastline-extraction


International Journal of Applied Earth Observation and Geoinformation 109 (2022) 102785

10

Furthermore, Sc. 2 in Model 4, which used the Jaccard loss function, 
provided better results than Sc. 1. All the models had better performance 
than Model 1 with RGB input (Sc. 1), defined as the base model for 
comparisons. These results indicate that all of the proposed modifica-
tions to the SUN architecture could increase the performance. The most 
significant improvement to the IoU score was as much as 1.68%. 
Moreover, our modified models outperformed FC-DenseNet and 

DeepLabV3+ networks. 
Fig. 9 presents the visual results for a sample from each coast type 

defined in Section 2.2.1. Most models, except FC-DenseNet, usually 
performed well on the samples with simple coasts. The predictions were 
very close to the ground truth images in these samples. However, some 
models (e.g., DeepLabV3+ and Model 4 Sc. 1) introduced slight artifacts 
to the predictions that were negligible in most cases. Moreover, samples 
with small islands also lead to satisfactory predictions. Although the 
target area in these samples was much smaller than the background 
area, all the models predicted these samples correctly. The major chal-
lenge was with the samples containing complex coasts. Artifacts were 
the most dominant in these samples, and there was also detail loss that 
was not a big issue with the previous coast types. Detail loss mainly 
occurred in small areas with higher geometric complexity. Model 2 Sc. 2 
offered the least artifacts and detail loss in this coast type. 

4.2. Caspian Sea dataset 

The next step in the evaluation process was to test the trained models 
on the Capsian Sea dataset. Table 4 represents the quantitative results of 
the Caspian Sea dataset. Similar to the China dataset, Model 2 Sc. 2 
achieved the best results, yielding the highest values in all the metrics 
(IoU = 98.87%, Accuracy = 99.43%). In addition, Model 2 Sc. 1 

Fig. 10. Visual results of the Caspian Sea dataset. Blue circles and red squares represent detail loss and artifact, respectively, and the gray areas are No-Data. (a) 
simple coast; (b-c) complex coast. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 
Caspian Sea dataset quantitative results. (maximum values are bold).  

Models Mean 
Accuracy 
(%) 

Mean 
Sensitivity 
(%) 

Mean 
Precision 
(%) 

Mean 
F1- 
score 
(%) 

Mean 
IoU 
(%) 

FC-DenseNet  92.42  85.67  98.99  91.44  84.92 
DeepLabV3+ 80.44  70.75  87.61  77.61  64.72 
Model 1 Sc. 1  94.62  90.94  98.62  94.37  89.92 
Model 1 Sc. 2  98.79  97.80  99.73  98.75  97.54 
Model 2 Sc. 1  99.13  98.53  99.76  99.14  98.29 
Model 2 Sc. 2  99.43  99.05  99.82  99.43  98.87 
Model 3 Sc. 1  95.94  92.82  99.10  95.81  92.09 
Model 3 Sc. 2  98.82  98.01  99.59  98.79  97.61 
Model 4 Sc. 1  97.75  96.08  99.56  97.76  95.69 
Model 4 Sc. 2  99.00  98.24  99.76  98.99  98.01  
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performed on par with Model 2 Sc. 2, offering the second-best scores in 
all the statistical indices, while DeepLabv3+ provided the lowest per-
formance (IoU = 64.72%, Accuracy = 80.44%). On the other hand, 
Models 1 and 3 performed better with NDWI images (Sc. 2), with the 
latter having a slightly higher IoU score. Moreover, Model 4 had better 
results in Sc. 2 (Jaccard loss), increasing the IoU score up to 2.32% 
compared to Sc. 1. Our models enhanced the performance compared to 
the SUN, with the most significant improvement to the IoU score being 
as high as 8.95%. FC-DenseNet and DeepLabV3+ could not generate 
comparable results to our models in this dataset. 

Fig. 10 depicts the visual results of a sample with the simple (Sample 
a) and two samples with the complex (Samples b and c) coast types in the 
Caspian Sea dataset. The results indicated that the FC-DenseNet and 
DeepLabV3+ models could not delineate the sea and land classes with a 
high level of accuracy and produced the worst segmentation outputs. As 
predicted from the quantitative results (Table 4), the SUN (i.e., Model 1 
Sc. 1) resulted in the most misclassifications compared to our modified 
models in all the coast types. Model 2 Sc. 1 and 2 offered the most ac-
curate sea-land maps based on visual interpretation, with the latter 
having the cleanest outputs. Despite the few defects in the segmentation 
images of this model, none were near the coastline region, which is of 
great importance in the automatic coastline extraction process. 

4.3. Comparison analysis 

Six different DL models were evaluated in a previously published 
paper by Yang et al. (2020b), from which the China dataset in our study 
is derived. U-Net, one of these models, had achieved an IoU score of 
93.11% in the best scenario. The best result in their study belonged to 
the DeepLabV3+ and FC-DenseNet models with IoU scores of 93.36% 
and 92.85%, respectively. Using the same dataset as in their study, we 
implemented these three models, the outputs of which were in agree-
ment with their study. Furthermore, we developed seven other models 
that were modified forms of the SUN. Six out of these seven models in 
our study outperformed their best result (i.e., DeepLabV3+), with our 
highest IoU score being as much as 94.45% which belonged to Model 2 
Sc. 2. These results proved that not only the enhancements to the SUN in 
our study were effective, but they also managed to outperform other 
previously deployed models as well. 

Our study also featured a novel testing dataset from the southern 
Caspian Sea coastal region. The quantitative segmentation results indi-
cated the poor generalizability of DeepLabV3+ and FC-DenseNet when 
facing unseen images from other test sites. Similarly, the SUN could not 
generalize well either, however, it was substantially better than the 
former two models in this regard. On the other hand, DeepLabV3+ and 
FC-DenseNet were significantly more time-consuming to train than the 
SUN (Table 2). Therefore, the SUN was selected as the base model for the 
enhancements developed in this study. 

The evaluations on Models 1 and 3 in the two datasets revealed that 
utilizing NDWI images (Sc. 2) instead of RGB (Sc. 1) achieved better 
results in three out of four testing instances. The temporal efficiency 
introduced by NDWI images in the training phase was negligible. 
However, the main advantage of using NDWI instead of RGB images, 
besides the improved performance of the models, was reducing the 
training dataset volume by a factor of three, which is immensely valu-
able when dealing with hardware limitations. Models 2 and 4 were 
tested with the Cross-entropy (Sc. 1) and the Jaccard (Sc. 2) loss func-
tions. In all four testing instances, the Jaccard loss function proved to be 
more efficient, introducing remarkable enhancement. 

4.4. Coastline extraction 

Using the prediction images of the 18 samples in the Caspian Sea 
dataset, it is possible to evaluate the coastal area and coastline changes 
in a time-series manner. For this purpose, the best model should be 
determined for the subsequent automatic coastline extraction using the 

post-processing step defined in Section 3.3. It should be noted that the 
sea-land interface constitutes a very small proportion of the pixels in the 
image; thus, very high evaluation metric values could be yielded even 
when there are disagreements between the actual sea-land interface and 
that generated by the models. Hence, the performance metrics were 
applied to the pixels belonging to the actual coastline in isolation rather 
than the whole image, considering a buffer window with a size of 5 
pixels. 

As is clear from Table 5, the closest segmentation outputs in the 
coastline buffer area to the ground truth images belonged to Model 2 Sc. 
2. This model achieved the highest scores in all the evaluation metrics; 
therefore, its outputs were selected to be used in the coastline extraction 
process. The post-processing outputs were the cleaned SLS images and 
the coastline position polylines. The extracted coastlines with a zoomed 
area for each ROI can be seen in Fig. 11. For example, the zoomed image 
in ROI 2 (Fig. 11c and d) is a manufactured object with more change 
than the other two zoomed images, than the other two zoomed images 
which are natural features. It should be noted that there was no data for 
ROIs 2 and 3 after 2018. 

It is possible to analyze the Caspian Sea coast area change quanti-
tatively by multiplying the number of the land pixels to a single Landsat- 
8 ground pixel area which is 30 × 30 m squared. The calculated coastal 
area in each sample of ROIs 1 to 3 is subtracted from the corresponding 
coastal area in the 2013 samples to evaluate the land area change. The 
coastal area in each ROI has increased with respect to 2013, indicating 
land gain in all the years (Fig. 12). The land gain in ROIs 1 to 3 in the 
last-time samples (2020, 2018, and 2018, respectively) is 9.73, 9.87, and 
1.98 km2. 

5. Conclusion 

This study aimed to improve the SLS performance of the SUN by 
modifying its architecture and utilizing different input image types. 
Three different models have been proposed and compared to the SUN, 
which enhanced the performance. These models also outperformed two 
other state-of-the-art networks including FC-DenseNet and Deep-
LabV3+. Moreover, a post-processing pipeline has been developed for 
the automatic coastline extraction on the segmentation outputs. This 
procedure is based on edge detection by morphological erosion opera-
tion and subsequent defect elimination by pixel connectivity classifica-
tion. The key findings of this study can be described as follows: 

• Utilizing single-band NDWI images instead of three-band RGB im-
ages as the input often yielded better results while significantly 
reducing the training dataset volume by a factor of 3. However, the 
reduction in training time was negligible.  

• The fusion of the NIR and RGB images improved the performance 
with the early fusion method outperforming the late fusion. 

Table 5 
Caspian Sea dataset quantitative results with a buffer size of 5 pixels. (maximum 
values are bold).  

Models Mean 
Accuracy 
(%) 

Mean 
Sensitivity 
(%) 

Mean 
Precision 
(%) 

Mean 
F1- 
score 
(%) 

Mean 
IoU 
(%) 

FC-DenseNet  76.49  80.32  78.71  75.31  65.83 
DeepLabV3+ 73.48  68.01  71.44  66.36  58.56 
Model 1 Sc. 1  82.10  78.75  87.99  79.87  71.35 
Model 1 Sc. 2  77.87  64.33  90.31  71.24  61.22 
Model 2 Sc. 1  86.84  83.56  93.35  86.01  78.19 
Model 2 Sc. 2  90.79  89.99  93.85  90.69  84.63 
Model 3 Sc. 1  83.66  88.05  83.67  83.67  75.89 
Model 3 Sc. 2  80.42  70.37  90.45  75.58  66.27 
Model 4 Sc. 1  85.01  84.75  90.02  84.76  76.49 
Model 4 Sc. 2  89.22  88.27  92.72  88.95  82.38  
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• The Jaccard loss function outperformed the cross-entropy loss 
function. 

• The proposed automatic coastline extraction pipeline could effi-
ciently delineate the coastlines with high accuracy while neglecting 
the defects. 

Our study provides a fully automatic framework for the SLS of 
Landsat-8 coastal images and subsequent coastline extraction, although 
some limitations should be noted. The extracted coastlines from the 
Landsat-8 images have a resolution of 30 m. Therefore they might not be 
suitable for applications where finer resolutions are required. It was 
impossible to tackle this problem in our study due to the lack of a large 
open-source SLS benchmark dataset with a finer ground resolution, and 
it should be considered in relative studies. Future studies in this field 
could benefit from the land surface temperature (LST) and sea surface 
temperature (SST) products for better discrimination between sea and 
land bodies. Moreover, radar data could also offer helpful information 
due to the unique backscattering pattern of open water bodies. Fig. 12. Land area change in ROI 1 (blue circles), ROI 2 (red squares), and ROI 

3 (black triangles) in each year compared to 2013. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 11. The upper panel depicts the extracted coastline time-series of ROIs 1 to 3. The lower panel represents the RGB images and segmentation outputs of the 
zoomed area in a-b) ROI 1, c-d) ROI 2, and e-f) ROI 3. 

M. Aghdami-Nia et al.                                                                                                                                                                                                                         



International Journal of Applied Earth Observation and Geoinformation 109 (2022) 102785

13

CRediT authorship contribution statement 

Mohammad Aghdami-Nia: Conceptualization, Methodology, 
Investigation, Software, Visualization, Writing – original draft, Writing – 
review & editing. Reza Shah-Hosseini: Conceptualization, Investiga-
tion, Project administration, Supervision, Writing – original draft. 
Amirhossein Rostami: Project administration, Visualization, Writing – 
review & editing. Saeid Homayouni: Investigation, Software, Visuali-
zation, Writing – review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgment 

The authors would like to thank the Google Colaboratory and the 
Google Earth Engine services for their freely available online cloud- 
based computing platforms. Furthermore, we would also like to thank 
Yang et al. (2020b) for generating the China benchmark dataset and 
making it openly accessible. Their dataset can be freely obtained from 
https://pan.baidu.com/s/1BlnHiltOLbLKe4TG8lZ5xg#list/path=%2F. 

References 

Ansari, M., Homayouni, S., Safari, A., Niazmardi, S., 2021. A New Convolutional Kernel 
Classifier for Hyperspectral Image Classification. IEEE J Sel. Top. Appl. Earth Obs. 
Remote Sens. 14, 11240–11256. https://doi.org/10.1109/JSTARS.2021.3123087. 

Aurelio, Y.S., de Almeida, G.M., de Castro, C.L., Braga, A.P., 2019. Learning from 
Imbalanced Data Sets with Weighted Cross-Entropy Function. Neural Process. Lett. 
50 (2), 1937–1949. https://doi.org/10.1007/s11063-018-09977-1. 

Ball, J.E., Anderson, D.T., Chan, C.S., 2017. Comprehensive survey of deep learning in 
remote sensing: theories, tools, and challenges for the community. J. Appl. Remote 
Sens. 11, 1. https://doi.org/10.1117/1.jrs.11.042609. 

Beach, W.P., Boak, E.H., Turner, I.L., Street, K., Vale, M., 2005. Shoreline Definition and 
Detection : A Review 688–703. https://doi.org/10.2112/03-0071.1. 

Carneiro, T., Medeiros Da Nobrega, R.V., Nepomuceno, T., Bian, G.-B., De 
Albuquerque, V.H.C., Filho, P.P.R., 2018. Performance Analysis of Google 
Colaboratory as a Tool for Accelerating Deep Learning Applications. IEEE Access 6, 
61677–61685. https://doi.org/10.1109/ACCESS.2018.2874767. 

Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018. Encoder-decoder with 
atrous separable convolution for semantic image segmentation. Lect. Notes Comput. 
Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 11211 
LNCS, 833–851. https://doi.org/10.1007/978-3-030-01234-2_49. 

Chen, W.-W., Chang, H.-K., 2009. Estimation of shoreline position and change from 
satellite images considering tidal variation. Estuar. Coast. Shelf Sci. 84 (1), 54–60. 
https://doi.org/10.1016/j.ecss.2009.06.002. 

Cheng, D., Meng, G., Xiang, S., Pan, C., 2017. FusionNet: Edge Aware Deep 
Convolutional Networks for Semantic Segmentation of Remote Sensing Harbor 
Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10 (12), 5769–5783. 
https://doi.org/10.1109/JSTARS.2017.2747599. 

Cui, B., Jing, W., Huang, L., Li, Z., Lu, Y., 2021. SANet: A Sea-Land Segmentation 
Network Via Adaptive Multiscale Feature Learning. IEEE J. Sel. Top. Appl. Earth 
Obs. Remote Sens. 14, 116–126. https://doi.org/10.1109/JSTARS.2020.3040176. 

Elkhateeb, E., Soliman, H., Atwan, A., Elmogy, M., Kwak, K.S., Mekky, N., 2021. A Novel 
Coarse-To-Fine Sea-Land Segmentation Technique Based on Superpixel Fuzzy C- 
Means Clustering and Modified Chan-Vese Model. IEEE Access 9, 53902–53919. 
https://doi.org/10.1109/ACCESS.2021.3065246. 

Feyisa, G.L., Meilby, H., Fensholt, R., Proud, S.R., 2014. Remote Sensing of Environment 
Automated Water Extraction Index : A new technique for surface water mapping 
using Landsat imagery. Remote Sens. Environ. 140, 23–35. https://doi.org/10.1016/ 
j.rse.2013.08.029. 

Firoozfar, A., Bromhead, E.N., Dykes, A.P., Lashteh Neshaei, M.A., 2012. Southern 
Caspian Sea Coasts Morphology Sediment Characteristics and Sea Level Change. 
Proc. Annu. Int. Conf. Soils, Sediments, Water Energy 17, 29. 

Giardino, C., Bresciani, M., Villa, P., Martinelli, A., 2010. Application of Remote Sensing 
in Water Resource Management: The Case Study of Lake Trasimeno. Italy. Water 
Resour. Manag. 24 (14), 3885–3899. https://doi.org/10.1007/s11269-010-9639-3. 

Hamylton, S.M., Prosper, J., 2012. Development of a spatial data infrastructure for 
coastal management in the Amirante Islands, Seychelles. Int. J. Appl. Earth Obs. 
Geoinf. 19, 24–30. https://doi.org/10.1016/j.jag.2012.04.004. 

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. 
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2016-Decem, 
770–778. https://doi.org/10.1109/CVPR.2016.90. 

Huihui, X., Qizhi, X., Lei, H., 2016. A sea-land segmentation algorithm based on Gray 
Smoothness Ratio, in: 4th International Workshop on Earth Observation and Remote 
Sensing Applications, EORSA 2016 - Proceedings. pp. 117–121. https://doi.org/ 
10.1109/EORSA.2016.7552778. 

Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by 
reducing internal covariate shift. 32nd Int. Conf. Mach. Learn. ICML 2015 1, 
448–456. 

Jegou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y., 2017. The One Hundred 
Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation. IEEE 
Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work. 2017-July, 1175–1183. 
https://doi.org/10.1109/CVPRW.2017.156. 

Kelly, J.T., Gontz, A.M., 2018. Using GPS-surveyed intertidal zones to determine the 
validity of shorelines automatically mapped by Landsat water indices. Int. J. Appl. 
Earth Obs. Geoinf. 65, 92–104. https://doi.org/10.1016/j.jag.2017.10.007. 

Khoshboresh-Masouleh, M., Alidoost, F., Arefi, H., 2020. Multiscale building 
segmentation based on deep learning for remote sensing RGB images from different 
sensors. https://doi.org/10.1117/1.JRS.14.034503 14, 034503. https://doi.org/ 
10.1117/1.JRS.14.034503. 

Lei, S., Zou, Z., Liu, D., Xia, Z., Shi, Z., 2018. Sea-Land Segmentation for Infrared Remote 
Sensing Images based on Superpixels and Multi-scale Features $. Infrared Phys. 
Technol. 91, 12–17. https://doi.org/10.1016/j.infrared.2018.03.012. 

Li, H., Zech, J., Ludwig, C., Fendrich, S., Shapiro, A., Schultz, M., Zipf, A., 2021a. 
Automatic mapping of national surface water with OpenStreetMap and Sentinel-2 
MSI data using deep learning. Int. J. Appl. Earth Obs. Geoinf. 104, 102571. https:// 
doi.org/10.1016/j.jag.2021.102571. 

Li, K., Wang, J., Yao, J., 2021b. Effectiveness of machine learning methods for water 
segmentation with ROI as the label: A case study of the Tuul River in Mongolia. Int. 
J. Appl. Earth Obs. Geoinf. 103, 102497. https://doi.org/10.1016/j. 
jag.2021.102497. 

Li, R., Liu, W., Yang, L., Sun, S., Hu, W., Zhang, F., Li, W., 2018. DeepUNet: A Deep Fully 
Convolutional Network for Pixel-Level Sea-Land Segmentation. IEEE J. Sel. Top. 
Appl. Earth Obs. Remote Sens. 11 (11), 3954–3962. https://doi.org/10.1109/ 
JSTARS.2018.2833382. 

Liu, W., Ma, L., Chen, H.e., Han, Z., Soomro, N.Q., 2017. Sea - Land Segmentation for 
Panchromatic Remote Sensing Imagery via Integrating Improved MNcut and Chan - 
Vese Model. IEEE Geosci. Remote Sens. Lett. 14 (12), 2443–2447. https://doi.org/ 
10.1109/LGRS.2017.2768300. 

Luo, P., Wang, X., Shao, W., Peng, Z., 2019. Towards understanding regularization in 
batch normalization. 7th Int Conf. Learn. Represent. ICLR 2019, 1–23. 

Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., Johnson, B.A., 2019. Deep learning in remote 
sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote 
Sens. 152, 166–177. https://doi.org/10.1016/j.isprsjprs.2019.04.015. 

Qiao, G., Mi, H., Wang, W., Tong, X., Li, Z., Li, T., Liu, S., Hong, Y., 2018. 55-year 
(1960–2015) spatiotemporal shoreline change analysis using historical DISP and 
Landsat time series data in Shanghai. Int. J. Appl. Earth Obs. Geoinf. 68, 238–251. 
https://doi.org/10.1016/j.jag.2018.02.009. 

Ranjbar, S., Zarei, A., Hasanlou, M., Akhoondzadeh, M., Amini, J., Amani, M., 2021. 
Machine learning inversion approach for soil parameters estimation over vegetated 
agricultural areas using a combination of water cloud model and calibrated integral 
equation model. https://doi.org/10.1117/1.JRS.15.018503 15, 018503. https://doi. 
org/10.1117/1.JRS.15.018503. 

Rogers, M.S.J., Bithell, M., Brooks, S.M., Spencer, T., 2021. VEdge_Detector: automated 
coastal vegetation edge detection using a convolutional neural network. Int. J. 
Remote Sens. 42 (13), 4805–4835. https://doi.org/10.1080/ 
01431161.2021.1897185. 

Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: Convolutional Networks for 
Biomedical Image Segmentation. Lect. Notes Comput. Sci. (including Subser. Lect. 
Notes Artif. Intell. Lect. Notes Bioinformatics) 9351, 234–241. 

Rostami, A., Shah-Hosseini, R., Asgari, S., Zarei, A., Aghdami-Nia, M., Homayouni, S., 
2022. Active Fire Detection from Landsat-8 Imagery Using Deep Multiple Kernel 
Learning. Remote Sens. 14, 992. https://doi.org/10.3390/rs14040992. 

Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T., 2008. LabelMe: A database and 
web-based tool for image annotation. Int. J. Comput. Vis. 77 (1-3), 157–173. https:// 
doi.org/10.1007/s11263-007-0090-8. 

San, B.T., Ulusar, U.D., 2018. An approach for prediction of shoreline with spatial 
uncertainty mapping (SLiP-SUM). Int. J. Appl. Earth Obs. Geoinf. 73, 546–554. 
https://doi.org/10.1016/j.jag.2018.08.005. 

Shamsolmoali, P., Zareapoor, M., Wang, R., Zhou, H., Yang, J., 2019. A Novel Deep 
Structure U-Net for Sea-Land Segmentation in Remote Sensing Images. IEEE J Sel. 
Top. Appl. Earth Obs. Remote Sens. 12 (9), 3219–3232. https://doi.org/10.1109/ 
JSTARS.2019.2925841. 

Shorten, C., Khoshgoftaar, T.M., 2019. A survey on Image Data Augmentation for Deep 
Learning. J. Big Data 6 (1). https://doi.org/10.1186/s40537-019-0197-0. 

van der Werff, H.M.A., 2019. Mapping shoreline indicators on a sandy beach with 
supervised edge detection of soil moisture differences. Int. J. Appl. Earth Obs. 
Geoinf. 74, 231–238. https://doi.org/10.1016/j.jag.2018.09.007. 

Vos, K., Harley, M.D., Splinter, K.D., Simmons, J.A., Turner, I.L., 2019. Sub-annual to 
multi-decadal shoreline variability from publicly available satellite imagery. Coast. 
Eng. 150, 160–174. https://doi.org/10.1016/j.coastaleng.2019.04.004. 

Wu, G., de Leeuw, J., Skidmore, A.K., Liu, Y., Prins, H.H.T., 2009. Performance of 
Landsat TM in ship detection in turbid waters. Int. J. Appl. Earth Obs. Geoinf. 11 (1), 
54–61. https://doi.org/10.1016/j.jag.2008.07.001. 

Yang, C., Rottensteiner, F., Heipke, C., 2020a. Investigations on skip-connections with an 
additional cosine similarity loss for land cover classification. ISPRS Ann 

M. Aghdami-Nia et al.                                                                                                                                                                                                                         

https://pan.baidu.com/s/1BlnHiltOLbLKe4TG8lZ5xg%23list/path=%252F
https://doi.org/10.1109/JSTARS.2021.3123087
https://doi.org/10.1007/s11063-018-09977-1
https://doi.org/10.1117/1.jrs.11.042609
https://doi.org/10.1109/ACCESS.2018.2874767
https://doi.org/10.1016/j.ecss.2009.06.002
https://doi.org/10.1109/JSTARS.2017.2747599
https://doi.org/10.1109/JSTARS.2020.3040176
https://doi.org/10.1109/ACCESS.2021.3065246
https://doi.org/10.1016/j.rse.2013.08.029
https://doi.org/10.1016/j.rse.2013.08.029
http://refhub.elsevier.com/S0303-2434(22)00111-8/h0060
http://refhub.elsevier.com/S0303-2434(22)00111-8/h0060
http://refhub.elsevier.com/S0303-2434(22)00111-8/h0060
https://doi.org/10.1007/s11269-010-9639-3
https://doi.org/10.1016/j.jag.2012.04.004
https://doi.org/10.1016/j.jag.2017.10.007
https://doi.org/10.1016/j.infrared.2018.03.012
https://doi.org/10.1016/j.jag.2021.102571
https://doi.org/10.1016/j.jag.2021.102571
https://doi.org/10.1016/j.jag.2021.102497
https://doi.org/10.1016/j.jag.2021.102497
https://doi.org/10.1109/JSTARS.2018.2833382
https://doi.org/10.1109/JSTARS.2018.2833382
https://doi.org/10.1109/LGRS.2017.2768300
https://doi.org/10.1109/LGRS.2017.2768300
http://refhub.elsevier.com/S0303-2434(22)00111-8/h0130
http://refhub.elsevier.com/S0303-2434(22)00111-8/h0130
https://doi.org/10.1016/j.isprsjprs.2019.04.015
https://doi.org/10.1016/j.jag.2018.02.009
https://doi.org/10.1080/01431161.2021.1897185
https://doi.org/10.1080/01431161.2021.1897185
http://refhub.elsevier.com/S0303-2434(22)00111-8/h0155
http://refhub.elsevier.com/S0303-2434(22)00111-8/h0155
http://refhub.elsevier.com/S0303-2434(22)00111-8/h0155
https://doi.org/10.3390/rs14040992
https://doi.org/10.1007/s11263-007-0090-8
https://doi.org/10.1007/s11263-007-0090-8
https://doi.org/10.1016/j.jag.2018.08.005
https://doi.org/10.1109/JSTARS.2019.2925841
https://doi.org/10.1109/JSTARS.2019.2925841
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1016/j.jag.2018.09.007
https://doi.org/10.1016/j.coastaleng.2019.04.004
https://doi.org/10.1016/j.jag.2008.07.001


International Journal of Applied Earth Observation and Geoinformation 109 (2022) 102785

14

Photogramm. Remote Sens. Spat. Inf. Sci. 5, 339–346. https://doi.org/10.5194/ 
isprs-Annals-V-3-2020-339-2020. 

Yang, T., Jiang, S., Hong, Z., Zhang, Y., Han, Y., Zhou, R., Wang, J., Yang, S., Tong, X., 
Kuc, T. yong, 2020. Sea-Land Segmentation Using Deep Learning Techniques for 
Landsat-8 OLI Imagery. Mar. Geod. 43, 105–133. https://doi.org/10.1080/ 
01490419.2020.1713266. 

Yu, X., Wu, X., Luo, C., Ren, P., 2017. Deep learning in remote sensing scene 
classification: a data augmentation enhanced convolutional neural network 
framework. GIScience Remote Sens. 54 (5), 741–758. https://doi.org/10.1080/ 
15481603.2017.1323377. 

Zarei, A., Hasanlou, M., Mahdianpari, M., 2021. A comparison of machine learning 
models for soil salinity estimation using multi-spectral earth observation data. ISPRS 
Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 5, 257–263. https://doi.org/ 
10.5194/isprs-annals-V-3-2021-257-2021. 

Zhang, R., Li, G., Wunderlich, T., Wang, L.i., 2021. A survey on deep learning-based 
precise boundary recovery of semantic segmentation for images and point clouds. 
Int. J. Appl. Earth Obs. Geoinf. 102, 102411. https://doi.org/10.1016/j. 
jag.2021.102411. 

M. Aghdami-Nia et al.                                                                                                                                                                                                                         

https://doi.org/10.5194/isprs-Annals-V-3-2020-339-2020
https://doi.org/10.5194/isprs-Annals-V-3-2020-339-2020
https://doi.org/10.1080/15481603.2017.1323377
https://doi.org/10.1080/15481603.2017.1323377
https://doi.org/10.5194/isprs-annals-V-3-2021-257-2021
https://doi.org/10.5194/isprs-annals-V-3-2021-257-2021
https://doi.org/10.1016/j.jag.2021.102411
https://doi.org/10.1016/j.jag.2021.102411

	Automatic coastline extraction through enhanced sea-land segmentation by modifying Standard U-Net
	1 Introduction
	2 Remote sensing datasets
	2.1 Datasets acquisition
	2.1.1 China dataset
	2.1.2 Caspian Sea dataset

	2.2 Datasets preparation
	2.2.1 China dataset
	2.2.2 Caspian Sea dataset


	3 Methodology
	3.1 Sea-land segmentation models
	3.1.1 Model 1
	3.1.2 Model 2
	3.1.3 Model 3
	3.1.4 Model 4

	3.2 Training strategies and comparison with other segmentation models
	3.3 Automatic coastline extraction
	3.4 Evaluation metrics
	3.5 Implementation

	4 Results and discussion
	4.1 China dataset
	4.2 Caspian Sea dataset
	4.3 Comparison analysis
	4.4 Coastline extraction

	5 Conclusion
	CRediT authorship contribution statement

	Declaration of Competing Interest
	Acknowledgment
	References


