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Abstract: Radiative Transfer Models (RTMs) are one of the major building blocks of remote-sensing
data analysis that are widely used for various tasks such as atmospheric correction of satellite imagery.
Although high-fidelity physical RTMs such as MODTRAN are considered to offer the best possible
modeling of atmospheric procedures, they are computationally demanding and require a lot of
parameters that should be tuned by an expert. Therefore, there is a need for surrogate models for the
physical RTM codes that can mitigate these drawbacks while offering an acceptable performance. This
study aimed to suggest surrogate models for the MODTRAN RTM using deep-learning models. For
this purpose, the top of atmosphere (TOA) spectra calculated by the MODTRAN code as well as the
bottom of atmosphere (BOA) input spectra and other atmospheric parameters such as temperature
and water vapor content observations were collected and used as the training dataset. Two deep-
learning regression models, including a fully connected network (FCN) and an auto-encoder (AE),
as well as a random forest (RF) machine-learning regression model were trained. The results of
these models were assessed using the three evaluation metrics root mean squared error (RMSE),
regression coefficient (R?), and spectral angle mapper (SAM). The evaluations indicated that the AE
offered the best performance in all the metrics, with RMSE, RZ, and SAM scores of 0.0087, 0.9906,
and 1.4295 degrees, respectively, in the best-case scenarios. These results showed that deep-learning
models can better reproduce results via high-fidelity physical RTMs.

Keywords: machine learning; deep learning; regression; multispectral remote sensing; radiative
transfer model; surrogate model

1. Introduction

Radiative transfer models (RTMs) are not only fundamental in the radiometric calibra-
tion of satellite sensors, but they are also extensively used for the atmospheric correction
of satellite data. These models solve the differential equation but are computationally
demanding [1]. There is a need for surrogate models based on deep learning that can
mitigate this issue while offering accurate outputs.

Deep learning is widely used in a wide variety of remote-sensing applications, such
as change detection [2] and binary segmentation [3]. There have been multiple cases of
emulating RTMs using deep learning. Pal et al. [4] suggested a surrogate model for the
shortwave and longwave radiative transfer model SP-E3SM based on deep neural networks
(DNNSs). Their model achieved 8-10 times faster run times while having an accuracy of
90-95%. Lagerquist et al. [5] emulated the shortwave Rapid Radiative Transfer Model
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(RRTM) with a UNet++ model. Their models proved to be about 10* times faster than
the original model. Aiming to find a faster way of running the Bayesian Atmospheric
Radiative Transfer (BART) code, Himes et al. [6] used a neural network approach. The
results demonstrated that the emulator was about 80-180 times faster than BART when run
on GPU. Yao et al. [7] compared different deep-learning models. Bidirectional Recurrent
Neural Networks (BRNNs) were found to offer the best performance.

Although there are other similar studies [8], this research is the first to leverage the
extensive dataset from the RadCalNet portal [9] to develop an emulator for the MODTRAN
RTM. Fully connected and autoencoder deep-learning models are developed using this
dataset and compared to the random forest machine-learning model.

2. Dataset

In 2014, the Infrared Visible Optical Sensors (IVOS) and the Committee on Earth
Observation Satellites (CEOS) Working Group on Calibration and Validation (WGCYV)
introduced the international calibration network RadCalNet [9]. This network comprises
four international calibration test sites that offer top-of-atmosphere (TOA) reflectance data
in the nadir view, collected at 30 m intervals between 9 a.m. and 3 p.m. local standard
time. This data is available at 10 nm intervals, ranging from 400 nm to 2500 nm of the
electromagnetic spectrum. These measurements are derived from ground-level nadir-
view reflectance readings, coupled with six atmospheric parameters including surface
pressure, temperature, columnar water vapor, columnar ozone, aerosol optical depth, and
the angstrom coefficient. To standardize the data processing, a correction to TOA values is
applied uniformly across all sites using the Modtran RTM.

The GONA and RVUS sites in RadCalNet have the highest number of measurements;
thus, only these two pseudo-invariant sites have been used in this study. The GONA cali-
bration site is located in Gobabeb, Namibia and is characterized by a sandy desert terrain,
covering a circular region with a 30 m radius. There have been 13,385 measurement pairs of
surface reflectance spectrum and atmospheric parameters on this site since 2015. The spectral
range is from 400 nm to 2300 nm with a gap between 1820 nm and 1910 nm bands.

The RVUS site is located in Railroad Valley, a desert region in the state of Nevada, USA,
which is surrounded by mountains to the east and west. This area is generally flat with less
than 3 m of elevation variation and spans 1 km by 1 km. So far, 17,348 measurements of
BOA spectrum and atmospheric parameters have been collected on this site. The spectral
range is from 400 nm to 2300 nm with a gap between 1810 nm and 1960 nm bands.

Some of the observations in the datasets were noisy and needed to be filtered out as
outliers. This was achieved by excluding every data sample outside the confidence level of
three times the standard deviation. Six other parameters have been concatenated with the
six atmospheric parameters to make a complementary feature set of 12 elements. These
six parameters include the measurement time and date, aerosol type, azimuth and zenith
angles of the sun, and earth to sun distance. A major part of the preprocessing was to
rescale the 12 complementary parameters in the range of 0 and 1 to facilitate the training of
models. The final step was to randomly select 70 percent of the data samples for training
and the remaining for testing.

3. Methodology

The main goal of this study is to develop a surrogate multivariate regression model
that can take the measured BOA spectra along with the complementary parameters as
inputs and estimate the TOA spectra. Atmospheric radiative processes that MODTRAN
calculates have a completely non-linear nature, and more sophisticated machine-learning
models are required to reproduce MODTRAN outputs. That is the reason why only random
forest was employed as a machine-learning model in this study, which is widely considered
one of the best regression models. Thus, fully connected network (FCN) and convolutional
autoencoder (AE) deep-learning models along with a random forest model have been
trained separately on the datasets gathered from the two calibration sites.
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3.1. Fully Connected Network (FCN)

The fully connected model presented in this study is designed to take an input vector
of 222 dimensions. This vector is the concatenation of the BOA spectrum (210 variables)
with the corresponding complementary parameters (12 variables). The outputs of the
model have a dimension of 210, equal to the number of TOA spectral bands. As can be
seen in Figure 1, the model architecture follows an encoder-decoder structure, suitable
for problems with matching input and output dimensions. The number of layers and
neurons in this model are adjusted in a way that closely resembles the architecture of the
other deep-learning model, allowing for a fair comparison of the performance of these
two architectures.
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Figure 1. Fully connected network architecture.

The ReLU has been chosen as the activation function for the hidden layers and is
widely used in deep networks. Additionally, since the problem is of a regression type,
the activation function for the last layer has been chosen to be Linear. To train the model,
the Adam optimizer with a learning rate of 0.0003 has been used. Finally, the model is
compiled with the mean square error (MSE) loss function, suitable for regression problems.

3.2. Autoencoder

An autoencoder (AE) is designed to extract representative features from input vectors
based on two fundamental components: the encoder and the decoder. The key point in
these networks is that the input layer dimension should match the output layer dimension.
Initially, the encoder part performs feature extraction on input data and reduces their
dimensions. Then, the decoder part maps the features back to the output. Figure 2
illustrates the architecture of the autoencoder network developed in this study.

The maxpooling operator just takes the largest value in its search window and omits
other information. Therefore, to prevent the loss of some of the complementary parameters,
the concatenation approach has not been used in this model. Instead, the 12 complementary
parameters have been fed to the model in the bottleneck section after the encoding of
BOA spectra. The activation functions, loss function, and optimizer are the same as in the
previous model, but in this model, a learning rate of 0.0001 has been adopted.
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Figure 2. Convolutional autoencoder network architecture.
4. Results and Discussion
To assess the accuracy of trained models, root mean square error (RMSE) and coeffi-
cient of determination (R?) metrics have been utilized. Since the regression problem in this
study produces output vectors, the spectral angle mapper (SAM) metric can indicate the
deviation of the predictions of surrogate models from the MODTRAN outputs in degree
units. The formula for the SAM metric is as follows, where Y and Y represent the actual
and predicted spectra, respectively.
Y.y
SAM = arccos| —— 1)
Y[Y
4.1. GONA Site Results
The quantitative results of the surrogate modeling for the GONA site are reported
in Table 1, presenting the values of evaluation metrics for 4011 testing spectra. Moreover,
Figure 3 illustrates the visual results. The autoencoder had the best performance in all
the metrics in the GONA dataset, with R2, RMSE, and SAM scores of 0.9823, 0.0116, and
1.9832 degrees, respectively.
Table 1. Quantitative results of the surrogate modeling for the GONA and RVUS sites.
GONA RVUS
Models R2 RMSE SAM (Degree) R2 RMSE SAM (Degree)
RF 0.9507 0.0207 2.7302 0.9469 0.0212 2.6254
FC 0.9332 0.0243 4.1760 0.9719 0.0150 2.6605
AE 0.9823 0.0116 1.9832 0.9906 0.0087 1.4295

The second highest scores belonged to the random forest model, while the fully
connected model achieved the worst outputs with an RMSE of 0.0243. It should be noted
that the RMSEs in this study are in the unit of surface reflectance. The visual results
illustrated in Figure 3 reflect the same quantitative results. The residuals’ range was the
narrowest in the autoencoder, and random forest had smoother means compared to the
fully connected model.
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Figure 3. The visual results of the GONA dataset: (a) best prediction of the models, (b) worst
prediction of the models, (c) residuals’ range (light grey is the minimum and maximum values, dark
grey is the standard deviation, and red line is the mean values).

4.2. RVUS Site Results

The quantitative results of the surrogate modeling for the RVUS site are reported in
Table 1, presenting the values of evaluation metrics for 5205 testing spectra. Moreover,
Figure 4 illustrates the visual results. Also, in the RVUS dataset, the autoencoder achieved
the best results with R2, RMSE, and SAM scores of 0.9906, 0.0097, and 1.4295 degrees.
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Figure 4. The visual results of the RVUS dataset: (a) best prediction of the models, (b) worst prediction
of the models, (c) residuals’ range (light grey is the minimum and maximum values, dark grey is the
standard deviation, and red line is the mean values).
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The fully connected model was better than random forest in terms of R2 and RMSE
scores (0.9716 and 0.0150, respectively); however, random forest had a slightly higher SAM
score (2.6254 degrees), indicating its better ability to model the shape of the spectrum. The
overall smoothest residuals’ mean belonged to the random forest model, although the error
range was the largest. The autoencoder had the narrowest residuals’ range, but the means
were slightly noisy.

5. Conclusions

Developing surrogate models for computationally demanding physical radiative
transfer models is of great importance in reducing computation costs. This study aimed to
accomplish this task by using deep-learning models to find a link between the inputs and
outputs of MODTRAN RTM. For this purpose, training datasets were gathered from the
GONA and RVUS calibration sites of the RadCalNet portal. Fully connected and autoen-
coder deep-learning models were employed to solve the regression problem. Moreover, a
random forest model was used for comparison. The results indicated that the autoencoder
model had the best performance in both datasets, with RMSE, R2, and SAM scores of 0.0087,
0.9906, and 1.4295 degrees, respectively, in the best-case scenarios. Furthermore, random
forest outperformed the fully connected model in the GONA dataset in all the evaluation
metrics, while the fully connected model had better RMSE and R? scores in the RVUS
dataset. Although other studies have found a regression method to be appropriate [8], the
main contribution of this research is the utilization of the RadCalNet dataset.
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